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Napier’s Preface:

Since nothing is more tedious, fellow mathematicians,
in the practice of the mathematical arts, than the great
delays suffered in the tedium of lengthy multiplications
and divisions, the finding of ratios, and in the extraction
of square and cube roots and in which not only is there
the time delay to be considered, but also the annoyance
of the many slippery errors that can arise: I had therefore
been turning over in my mind, by what sure and
expeditious art, I might be able to improve upon these
said difficulties. In the end after much thought, finally I
have found an amazing way of shortening the
proceedings, and perhaps the manner in which the
method arose will be set out elsewhere: truly, concerning
all these matters, there could be nothing more useful
than the method that I have found.

. . .
Farewell.



Laws of logarithms

loga(b × c) = loga b + loga c
loga 1 = 0

loga(bc) = (loga b)× c
loga a = 1

Two monoids; (×, 1) (slippery!) versus (+, 0) (expeditious!).

In the ‘Descriptio’, Napier’s idea was (I think) to replace
geometrical progression by arithmetical progression.

Interestingly, he never thought in terms of a ‘base’. 1

Anyway, he overlooked a few things . . .

1But his was (1/e) acc. Eli Maor: “e: the Story of a Number”.



Böhm’s laws

Baron J. Napier overlooked the logarithms of sums:

logx(α + β) = (,) + ((logx α)(∧) + (logx β)(∧))K

logx 0 = 0K

Also, a more general form for the logarithm of a power:

logx(αβ) = (logx α)× (,) + (logx β)× (∧)

in the case when the ‘base’ x may occur in β.

I shall try to explain . . .



An air of mystery



An air of straightforwardness



Arithmetical combinators

A a b c d 7→ b c (a c d)
M a b c 7→ b (a c)
E a b 7→ b a
N a b 7→ b

Infix notation:

a ∧ b = b a
(a× b) c = (c ∧ a) ∧ b
(a + b) c = (c ∧ a)× (c ∧ b)
0 a b = b

or, writing argfun for application, 1 for identity:

ca×b = (ca)b , c1 = c
ca+b = ca × cb , c0 = 1

Essentially, Cantor’s (Archimedes’?) Laws of Exponents.



‘Ordinary’ (boring) combinators

C f a b 7→ f b a swap, flip, interchange, f C

B f a b 7→ f (a b) compose (·)
W f a 7→ f a a duplicate, DUPL, contraction
I f 7→ f identity, id, SKIP, = BCC
K f a 7→ f weaken, const, POP

{B,C} linear, {B,C ,K} affine, {B,C ,K ,W } general.
{E ,M} linear, {E ,M,N} affine, {A,M,E ,N} general.



Bracket abstraction

[x ] a = K a
[x ] x = I
[x ] (a β) = B a ([x ]β)
[x ] (α b) = C ([x ]α) b
[x ] (α β) = W (C B ([x ]α) (C B ([x ]β)))

You might want some explanation of the last bit!

[x ] (α β) = S ([x ]α) ([x ]β)
= W (S ′ ([x ]α) ([x ]β))

S ′ a b c1 c2 = a c1 (b c2)
S ′ a b c1 = (a c1) · b

= B (a c1) b
= C B b (a c1)

S ′ a b = (C B b) · a
= B (C B b) a
= C B a (C B b)
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Reducing BWICK to AMEN

C a b c = a c b b ∧ c ∧ a
= E b (a c) (c ∧ a) ∧ (b∧)

C a b = M a (E b) a× (b∧)
C a = M E (M a) (∧)× (a×)
C = M M (M E ) (×)× ((∧)×)

B = C M (∧)× ((×)×)

K = C N (∧)× (0×)

I = N N 0 ∧ 0 (alt. (∧)× ((∧)×))

W = C W C (∧)× (((∧) + (∧))×)

W C a f = f a a a ∧ a ∧ f
= E a (E a f ) f ∧ ((a∧)× (a∧))

W C = A E E (∧) + (∧)

K = 0C I = (∧)C W = ((∧) + (∧))C
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Linear and affine logarithms

The following are easily verified, where a, b, b1, . . . bk are
expressions that do not contain any occurrences of the variable x .

logx x = 1
logx(a x b) = logx(b ∧ x ∧ a)

= logx((x ∧ a) ∧ (b∧))
= a× (b∧)

logx(a x b1 .. bk) = a× (b∧1 )× ..× (b∧k )
logx(a x x) = ((∧) + (∧))× (a∧)
logx a = 0× (a∧) = aK

General linear logarithms can be put in the form:

n∏
i=1

(ai × (

ki∏
j=1

(b∧i ,j)))



Logarithms of exponentials

The trick is to use a standard pairing combinator (,).

(,) a b c = (a, b) c = c a b

so we can express exponentiation generally as a sum of constant
powers.

a b c = a ∧ (b, c) hence

a b = (a∧) · (b(,)) ie.

b ∧ a = (b(,))× (a∧)

now (α-convert and) take logs. (We already know how to compute
logarithms of constant powers.)

logx(αβ) = (logx α)× (,) + (logx β)× (∧)



Logarithms of sums

The trick here is to use currying (easily expressible arithmetically)
to switch between two arguments for a function and one

curry f x y = f (x , y)

In fact, curry (a∧) = a, so that (∧)× curry = 1. They ((∧) and
curry) are (near-semi?) reciprocal.

logx(α + β) = curry((logx α)(∧) + (logx β)(∧))

The proof is (I’m afraid) a longish, but straightforward verification.
Next page if anyone wants to see it.



Verification of formula for log-of-sum

curry((logx α)(∧) + (logx β)∧) x y =

((logx α)(∧) + (logx β)∧) (x , y) =
(x , y) ∧ (logx α) ∧ (∧)× (x , y) ∧ (logx β) ∧ (∧) =
(logx α) ∧ (x , y)× (logx β)(x , y) =
(logx α) x y × (logx β) x y =
y ∧ ((x ∧ logx α) + (x ∧ logx β))

Now apply the ζ rule of ‘exponentiality’.



Postlude: algebra

Use: ‘ζ-rule’: where x not free in a, b,

a x = b x

a = b

Near-semi-ri(n)g. Like arithmetic of transfinite ordinals (BUT
without 1α = 1, or 0× α = 0).

α× 1 = α = 1× α
α× (β × γ) = (α× β)× γ
α + 0 = α = 0 + α
α + (β + γ) = (α + β) + γ

α× (β + γ) = α× β + α× γ
α× 0 = 0

C. Böhm “Combinatory foundation of functional programming”
published ACM 1982
“Notion of zero” – closed under 0, (+), (a×), (×a)
eg cK . (An “ideal” ? )
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. . . Farewell

“Indeed I await the judgment and censure of the
learned men . . . perhaps rashly, to be examined in the
light of envious disparagement.”

John Napier, Baron of Merchiston, Descriptio, CH II.



Example: (,), the pairing combinator

(,) a b c = c a b = b ∧ a ∧ c

(,) a b = (b(∧)) · (a(∧)) = (a(∧))× (b(∧))

(,) a = ((a(∧))(×)) · (∧) = (∧)× ((a(∧))(×))

(,) = ((∧)(×)) · ((∧)× (×)) = (∧)× (×)× (∧)(×)



Example: curry, the currying combinator

curry f x y = f ((,) x y)
curry f x = f · ((,) x)

curry f = (f (·)) · (,) = (,)× (f (·))

curry = (,)(×) · (·) = (∧)× (×)(×) × (,)(×)

There are other definitions. One such is curry f = (,) + f K , from

which we get curry = K × (,)(+).
However curry is linear, and should not need any additive
apparatus like K or (+).
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An example: ‘linear’ S

S ′ a b c1 c2 = a c1 (b c2)
S ′ a b c1 = a c1 · b = b × (a c1)
S ′ a b = (b×) · a = a× (b×)
S ′ a = (a×) · (×) = (×)× (a×)
S ′ = ((×)×) · (×) = (×)× ((×)×)

Weirdly, C = S ′(∧), S ′ = S ′(×).

S a b = (S ′ a b)W = (a× (b×)) ∧ ((∧) + (∧))C

S = (×)× ((×)×)× (×)× ((∧) + (∧)) ∧ ((×)× ((∧)×)× (∧))



An example: ‘linear’ S

S ′ a b c1 c2 = a c1 (b c2)
S ′ a b c1 = a c1 · b = b × (a c1)
S ′ a b = (b×) · a = a× (b×)
S ′ a = (a×) · (×) = (×)× (a×)
S ′ = ((×)×) · (×) = (×)× ((×)×)

Weirdly, C = S ′(∧), S ′ = S ′(×).
S a b = (S ′ a b)W = (a× (b×)) ∧ ((∧) + (∧))C

S = (×)× ((×)×)× (×)× ((∧) + (∧)) ∧ ((×)× ((∧)×)× (∧))



An example: ‘linear’ S

S ′ a b c1 c2 = a c1 (b c2)
S ′ a b c1 = a c1 · b = b × (a c1)
S ′ a b = (b×) · a = a× (b×)
S ′ a = (a×) · (×) = (×)× (a×)
S ′ = ((×)×) · (×) = (×)× ((×)×)

Weirdly, C = S ′(∧), S ′ = S ′(×).
S a b = (S ′ a b)W = (a× (b×)) ∧ ((∧) + (∧))C

S = (×)× ((×)×)× (×)× ((∧) + (∧)) ∧ ((×)× ((∧)×)× (∧))



More examples: fixpoint combinators

sap = (∧)W , (or 1W for that matter)

YCurry = λ f . (λ x . f (x x))(λ x . f (x x)))
= λ f . sap(f · sap)
= λ f . sap(sap× f )
= (sap×)× sap
= sap ∧ ((×) + 1)

YTuring = T ∧ T = T ∧ sap where T x y = y(x x y).

TC y x = y(sap x y) = y(sapC y x) = (y · (sapC y))x
TC y = (y ∧ sapC )× y = y ∧ (sapC + 1)
T = (sapC + 1)C

So YTuring = (sapC + 1)C×sap.
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Notation (Sorry!)

Operators
A→(+)
M→(×)
E→(∧)
N→ 0

Section notation

(∧) a b = (a∧) b = a ∧ b = b ∧ a ∧ (∧) = b ∧ (a∧)
(×) a b = (a×) b = a× b = b ∧ a ∧ (×) = b ∧ (a×)
(+) a b = (a+) b = a + b = b ∧ a ∧ (+) = b ∧ (a+)



Laws of exponents

αβ×γ = (αβ)γ α1 = α
αβ+γ = αβ × αγ α0 = 1

α ∧ (β × γ) = (α ∧ β) ∧ γ α ∧ 1 = α
α ∧ (β + γ) = (α ∧ β)× (α ∧ γ) α ∧ 0 = 1

arg ∧ fun = fun(arg)

β × γ = λα. (α ∧ β) ∧ γ 1 = λα. α
β + γ = λα. (α ∧ β)× (α ∧ γ) 0 = λα. 1
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Exponents, λogarithms

α ∧ (β + γ) = (α ∧ β)× (α ∧ γ) α ∧ 0 = 1
α ∧ (β × γ) = (α ∧ β) ∧ γ α ∧ 1 = α

logα(B × C ) = logα B + logα C logα 1 = 0
logα(B ∧ γ) = (logα B)× γ logα α = 1

C. Böhm: “Un modèle arithmétique des termes de la logique
combinatoire.”
in “Lambda Calcul et Sémantique Formelle des Langages de
Programmation – Actes de la Sixième Ecole de Printemps
d’Informatique Theorique, La Châtre, 1978”.



Oh, mega!

R(b, a) = (a, b(0, a), b(1, b(0, a)), . . . , cn+1 = b(n, cn), . . .)

Π(b) = (1, b(0), b(0)× b(1), . . . , cn+1 = b(0)× . . .× b(n), . . .)

Σ(b) = (0, b(0), b(0) + b(1), . . . , cn+1 = b(0) + . . .+ b(n), . . .)

R = Σ(hd, tl× hd, tl2 × hd, . . .)

ω = Σ(1, 1, . . .) = Σ(1!)

f ω = (1, f , f 2, f 3, . . .)
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